テクニカルレポート

新規なエアロゾル化ガスデポジションによるアルミナ絶縁膜の作製

渕田 英嗣¹*, 谷本 久典², 目 義雄³

¹(有) 渕田ナノ技研, 〒 305-0822 つくば市苅間 1561-3. ² 筑波大学, 〒 305-8577 つくば市天王台 1-1-1. ³ 物質・材料研究機構, 〒 305-0047 つくば市千現 1-2-1.

Fabrication Alumina Film with High Breakdown Field Strength by New Aerosol Gas Deposition Technology

Eiji FUCHITA¹*, Hisanori TANIMOTO² and Yoshio SAKKA³

¹Fuchita Nanotechnology, Ltd., 1561-3 Karima, Tsukuba 305-0822, Japan.
²University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan.
³National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan.

Received December 24, 2019; Revised February 3, 2020; Accepted February 4, 2020

ABSTRACT

The aerosol gas deposition (AGD) is a low temperature method for film formation. No heating procedure exists in the AGD process during the formation of the AGD films, where even ceramic films can be fabricated. We have demonstrated the advanced AGD with the practical application of a room temperature film-forming device for ceramics that can form a thin insulating film with excellent electrical insulation at a high deposition rate. For example, an alumina film having a withstand voltage of 5 kV with a film formation of about 300 mm round area is required. In order to obtain such a high dielectric breakdown electric field strength, it is necessary to form a homogeneous film in which alumina particles are densely bonded. In this report the conventional AGD system has been improved and a new target AGD has been developed. The deposition has been performed by the arrival of active species (atoms, molecules and fine nanoparticles) along the target surface. In order to handle homogeneous large areas and high-speed film formation, a new mask plate was added for cutting flying particles in specular direction. Good alumina film quality was obtained by the new target AGD added the mask plate using 30 mm wide nozzle.

KEY WORDS

aerosol gas deposition, plasma, sputter, mask-plate, target-plate

1 緒 言

セラミックス粉を常温成膜するエアロゾル化ガスデポジ ション(AGD)は、グリーンテクノロジーとしての位置づ けで、環境・エネルギー分野、耐熱材料分野、電子・デバイ ス分野などの研究開発が進められている¹⁻⁵⁾.我々は、薄くて 電気絶縁に優れた絶縁膜を高速レートで成膜できるセラミッ クスの常温成膜装置の研究開発を進めている⁶⁻¹⁴⁾.例えば、 およそ300 mm¢の成膜面積で、5 kVの耐電圧のアルミナ膜 が要求されている.高い絶縁破壊電界強度を得るためには、 ナノ粒子が緻密に結合した均質な膜形成が必要とされる. エアロゾル化ガスデポジション (AGD) 成膜は, 原料粉 をガス搬送しノズルから基板上へ噴射・堆積する方法であ る. その際, 原料粉を基板へ直接噴射させると, 形成された 膜内に大きな粒子・粉が混入・取り込まれる. 粉の混入状況 は,本文献7のFig.16のTEM 像に掲載している. 大きな粒 子の周りには, 隙間ができる確率が高くなり, 結果として リーク電流の増大につながり絶縁性を阻害する. そこで,大 きな粒子を混入させない方法として, 従来のAGD 装置を改 良し,新たにターゲット方式 AGD を開発し, 実験手法で示 すようにターゲット面からの微細ナノ粒子の飛来により成膜 を行ってきた⁷⁰. ただ, 大面積の均質な成膜が阻害される事 例も出ていた. ここで, AGD はノズルから噴射する粉量に

^{*} Corresponding author, E-mail: info@nanotechepd.com

対する成膜効率は1%以下であり、成膜への寄与を終えた粉 の始末が重要と考えるに至った.

そこで、大面積・高速成膜の安定対応の際に、成膜への寄 与を終えた粉を形成膜に混入させないため、ノズル入射に対 するターゲット面での正反射方向などの飛来粒子をカットす る必要があると考え、新たなマスク板を追加して成膜したと ころ、良好な膜質が得られた.本レポートでは、新たに開発 した AGD 法のアルミナ膜の作製条件を検討し、作製したア ルミナ膜の絶縁性能について報告する.

2 実験方法

Fig.1は、AGD装置の全体概要を示している. 原料アルミ ナ粉は密閉したステンレス鋼製エアロゾル化容器に入れられ ており、エアロゾル化容器底部に設けられたガス供給口から ガス供給すると、ガスに吹きあげられて舞い上がり、エアロ ゾル化される. 巻き上げられたアルミナ粉は、ガスとともに、 搬送管を通して、真空排気されている膜形成室に送られる. そして、搬送管の先端部に取り付けられたノズル先端から、 対向する基板へ噴射され、膜となって堆積する. 基板は、駆 動系に取り付けられており、プログラム制御により、目的の 成膜幅に相当する長さを往復運動させている. 例えば40 mm 長さを往復動作(駆動速度5 mm/s) させると、ノズル幅で 40 mm 長さの積層膜が形成される. この装置の構成要素は全

Fig.2は、本実験で使用した新型AGD装置のノズル周り

て接地アースされている.

Fig. 1 Schematic diagram of the AGD apparatus.

Fig. 2 Illustrations of nozzle, target, mask and substrate at deposition site arrangement. Geometry of target type AGD with mask.

の構成図であり、マスク付きのターゲット方式 AGD と呼ん でいる.この方法は、ノズルから噴射されたアルミナ微粒 子(今回は 0.4 µm と 3 µm 粒子を 3 対 1 の重量比で混合した 80 g/バッチの粉)を一度ターゲット板に衝突させ、原料飛 来粒子の荷電を均一化させるとともに、安定してプラズマを 誘起させ、その場で形成される活性種(原子、分子および微 細なナノ結晶粒子)を使用して、基板上に緻密な膜形成を行 う²⁾.成膜は、ターゲット面に沿った A 方向に活性種が飛来 して成膜される.巻上げへリウムガス流量を 60 L/min(換算 値)とし、幅広ノズル(開口 30 mm x 0.3 mm)を基板(ア ルミニウムバフ研磨品、50 mm 角)に対して 60 度傾けてセッ トした.今までの実験で、この 60 度の角度で良好な結果が 得られたので、この条件に固定した.ステンレス鋼製のター ゲット板(30 x 80 x 2 mmt)は水平方向から 105 度あるいは 120 度傾け、基板から 45 mm の距離でセットした.

ノズル入射に対するターゲット面での正反射方向をB方 向で示しているが、そのB方向などの飛来粒子をカットす る新たなステンレス鋼製のマスク板の挿入エッジ角度は、 99度,90度,81度とした.エアロゾル化室および成膜室の 圧力はそれぞれ約50kPa,約900Paであった.成膜サイズ 40 mm x 30 mm,成膜時間16分とした.

アルミナ膜の I-V 特性評価にはデジタル超高抵抗/微小電 流計(ADC製,5450)を使用した.上部電極は \$2 mmの穴 が開いているパンチングメタルをマスクとし,スパッタでア ルミニウムを約200 nm 成膜した.各アルミナ膜に対して十 字の位置の5点(1 は膜中心,2および3 はノズルからの噴 射方向に対して膜中心からそれぞれ奥に6 mm,手前に6 mm の位置,また4および5 はノズルの噴射方向に対して膜中心 からそれぞれ右に5 mm,左に5 mmの位置)の電極と基材 間に順次電圧を10 V 刻みで1 kV まで印加し,リーク電流値 を測定した. 膜厚測定には,マイクロメータおよび実体顕微 鏡を使用した.

3 実験結果および考察

3.1 マスク板設置の効果

ターゲット角度 120 度,マスク無し・有りの条件でのアル ミナ成膜の表面写真を Fig. 3a, b に示す. 基板両端はカプト ンテープで固定した.成膜は黒色を呈している.マスク無し の条件では,スキャン距離 20 mm の成膜(8分間の成膜)に

Fig. 3 Photograph of T-AGD alumina films at the target angle 120 deg. (a) no mask (scanning 20 mm), (b) equipped mask (scanning 40 mm).

Fig. 4 Microscope images of T-AGD alumina films at the target angle 105 deg. (a) no mask, (b) equipped mask. (Nitrogen gas)

おいて、成膜開始付近で膜剥離が観察される.これは、ノズ ルから噴出し、ターゲット面で正反射したB方向の原料粉 が寄与しているものと考えられる.一方、マスク有(マスク 先端までの角度は99度)の条件では、スキャン距離40 mm の成膜においても、膜剥離は起きず、正反射の粉を遮蔽する マスクの設置が有効であることがわかる.尚、ターゲット方 式 AGD アルミナ形成膜をEDS 分析したところ、ターゲット 材であるステンレス鋼の構成元素は検出されず、ターゲット からのコンタミは無いと判断した.

ターゲット角度105度,マスク無し・有りの条件でのア ルミナ成膜の実体顕微鏡像をFig.4a,bに示す.窒素ガスを 使用した成膜で,マスク無しのアルミナ膜aは膜厚13 μmで あった.a膜平面の凹凸は0.2 μm以下の膜であるが,その表 面の一部に10 μmから20 μmの大きさの凝集粒子の付着が多 数認められる.一方,マスク挿入角度81度のアルミナ膜b (膜厚19 μm)には,大きな付着物は無く,マスクの設置が 緻密膜を形成するのに有効であることがわかる.

3.2 マスク板の挿入エッジ角度の効果

ターゲット角度 105 度に一定とし、マスク挿入角度を変え て膜を作製した. ヘリウムガスを使用して作製した各アルミ ナ膜厚で規格化した I-V 特性を Fig. 5A, B, C に示す. 各アル ミナ膜に対して実験方法に記載の 5 点の位置の値をそれぞれ 示している.

- (A) マスク挿入角度99度のアルミナ膜は膜厚16µmであった. DC1 kV 印加時のリーク電流は3.2 x 10⁻¹⁰ A であり、 薄い膜厚においても高い絶縁性能を示した.
- (B) マスク挿入角度 90 度のアルミナ膜は膜厚 34 μm であった. DC1 kV 印加時のリーク電流は 1.8 x 10⁻¹⁰ A であり, 高い絶縁性能を示した.
- (C) マスク挿入角度 81 度のアルミナ膜は膜厚 53 μm であった. DC1 kV 印加時のリーク電流は 1.5 x 10⁻⁷ A であり, 厚い膜にもかかわらず,絶縁低下が見られた. これらのことから,絶縁特性にはマスク挿入角度が重要であることがわかった.
- 3.3 使用ガス種の影響

使用ガス種の影響を見るために、ヘリウムガスで厚い膜が 得られたターゲット角度105度、マスク挿入角度81度の条 件で、窒素およびアルゴンガスを使用して膜を作製した. Fig. 6A, Bに窒素およびアルゴンガスを使用して作製した各 アルミナ膜厚で規格化したI-V特性を示す.

Fig. 5 Volt/thickness-ampere characteristics of T-AGD alumina films at 105 deg. target angle with mask (A) 99 deg. angle, (B) 90 deg. and (C) 81 deg.

- Fig. 6 Volt/thickness-ampere characteristics of T-AGD alumina films at 105 deg. target angle with mask 81 deg. angle by using (A) nitrogen gas, (B) argon gas.
- (A) 窒素ガスを使用したアルミナ膜は、成膜速度がヘリウムガスに比べおよそ1/3で、膜厚19μmであった。その I-V特性は、絶縁破壊は生じないが、DC1 kV印加時に

おいて 1.0 x 10⁻⁶ A のリーク電流値を示し, 絶縁性能の 低下が見られた.

(B) アルゴンガスを使用したアルミナ膜は、さらに成膜速度 が低下し、12 μmの膜厚であった。その I-V 特性は、絶縁 破壊は生じないが、DC1 kV 印加時において 1.0 x 10⁻⁵ A のリーク電流値を示した。

4 結 言

従来の AGD 装置にターゲット板を装備する改良を行い, 静電気誘導の最適化を考慮した新たな静電誘導プラズマ成膜 装置(ターゲット方式 AGD)を構築した.今回,さらにマ スク板を装備する改良を行ったところ,絶縁性能の向上およ び特性の安定化が図られた.

マスクエッジ挿入角度が90度から開口度を広げた81度で は、3桁のリーク電流値の増大がみられた.アルミナ粒子が 緻密に結合した膜の形成には、マスク挿入位置の最適値があ るものと推察された.マスク付きのターゲット方式AGDで 作製したアルミナ膜が安定してバルク体の絶縁破壊電界強度 を超える特性を持つことを示した.

献

- S. Kashu, E. Fuchita, T. Manabe, C. Hayashi: Jpn. J. Appl. Phys., 23 (1984) L910-912.
- Y. Imanaka, N. Hayashi, M. Takenouchi, J. Akedo: J. Eur. Ceram. Soc., 27 (2007) 2789-2795.
- E. Fuchita, E. Tokizaki, Y. Sakka: J. Ceram. Soc. Jpn., 118 (2010) 767-770.
- 4) J. Akedo: J. Am. Ceram. Soc., 89 (2006) 1834-1839.

文

- E. Fuchita, E. Tokizaki, E. Ozawa, Y. Sakka: J. Ceram. Soc. Jpn., 118 (2010) 948-951.
- E. Fuchita, E. Tokizaki, E. Ozawa, Y. Sakka: J. Ceram. Soc. Jpn., 119 (2011) 271-276.
- E. Fuchita, E. Tokizaki, E. Ozawa: J. Jpn. Soc. Powder Powder Metallurgy, 63 (2016) 937-946.
- E. Fuchita, E. Tokizaki, E. Ozawa, Y. Sakka, E. Kita: J. Jpn. Soc. Powder Powder Metallurgy, 64 (2017) 558-562.
- 9) E. Fuchita, et al.: JPN Patent, 6485628.
- 10) E. Fuchita, et al.: USA Patent, 9752227.
- 11) E. Fuchita, et al.: USA Patent, 10266938.
- 12) E. Fuchita, et al.: KOR Patent, 10-1671097.
- 13) E. Fuchita, et al.: CHN Patent, ZL201510292827.9.
- 14) E. Fuchita, et al.: EU appl. No., 15 168 657.3.